Letter to the Editor

Sleep and delay discounting: is insufficient sleep a cause or a manifestation of short-sighted choice?

Stijn A. A. Massar* and Michael W. L. Chee

Centre for Cognitive Neuroscience, Neuroscience and Behavioral Disorders Program, Duke-NUS Medical School, Singapore

*Corresponding author. Stijn A. A. Massar, Centre for Cognitive Neuroscience, Duke-NUS Medical School, 8 College Road, Singapore 169857. Email: stijn.massar@duke-nus.edu.sg

Delay discounting, or impulsive choice, refers to the tendency to prefer immediate rewards over delayed but greater benefits. Resisting the temptation to receive immediate rewards is thought to be an active process of self-control that requires cognitive and energetic resources [1]. The idea that sleep loss reduces the availability of such self-control resources and could consequently lead to more delay discounting has been expressed in several theoretical accounts [2]. In a recent study, Curtis et al. [3] report an analysis of data from the Human Connectome Project (HCP) database, including a large sample of individuals (N = 1190) who had performed a delay discounting task and had provided habitual sleep reports (Pittsburg Sleep Quality Index; PSQI). Results showed that habitual short sleep was associated with increased delay discounting, such that individuals who slept less than 6 hours discounted delayed rewards more steeply than those who had average sleep duration (7–9 hours). The effect sizes associated with sleep duration were considerable (Cohen’s d ranging from 0.34 to 0.48), outweighing the effects of other factors (i.e. income, education, fluid intelligence) known to be related to delay discounting. Furthermore, the effects of habitual sleep duration were independent of self-reported daytime dysfunction. Given the effect sizes and the large sample size, these findings can be considered strong, well-powered, and convincing evidence for an association between sleep duration and impulsive choice.

The findings are also surprising, in the light of earlier experimental studies on sleep and delay discounting. Although an initial study reported increased delay discounting after a night of sleep deprivation [4], later studies involving total sleep deprivation, partial sleep deprivation, and daytime naps, have not found changes in delay discounting after short-term sleep manipulations [5–9]. How could this discrepancy be explained? The authors point to a few differences between their study and previous reports with respect to task variables (delay duration/reward amount), statistical power, and the differential nature of sleep effects (habitual vs. acute/short-term) that could have contributed. Another important point is that this study is correlational in nature, and previous studies have experimentally manipulated sleep. The authors are careful to acknowledge this and refrain from strong directional conclusions; however, the results are still mostly framed as “the effects of short sleep on cognitive impulsivity.”

We would like to offer an alternative perspective: that short habitual sleep may instead be a result of a tendency to choose instant gains (e.g. watching TV late at night), over long-term benefits (e.g. being productive the next day). Several studies have suggested a relation between insufficient sleep and such choice behavior. For instance, Kroese and colleagues [10] found that in a large representative population sample (N = 2637), more than 50% of participants indicated they regularly go to bed later than they planned (2 or more nights per week)—a phenomenon the authors called “bedtime procrastination.” Such failure to keep to intended bedtime was associated with shorter subjective sleep duration, dissatisfaction with sleep, and daytime fatigue. Moreover, bedtime procrastination was negatively correlated with trait self-control, a construct closely related to resisting temptations and making short-sighted choices. The decision to extend bedtimes beyond one’s intentions is often made...
Sleep deprivation alters effort 

Procrastination, Health, and Well-Being 

Effects of sleep deprivation on 

association between habitual sleep and delay discounting comes 

exacerbation over time [3]. These findings suggest 

that the tendency to ignore future benefits may actually be a 

factor contributing to the development of poor sleep habits. 

From this perspective, delay discounting could be viewed as 

a trait that relies on stable preferences and habits. As such it 

may be less sensitive to temporary changes in sleep state (e.g. 

experimental sleep deprivation). It is relevant to note that 

excessive delay discounting has also been associated with a 

wide range of other disadvantageous health behaviors (e.g. 

smoking, drug abuse, failure to keep to a diet, unsafe sexual 

behaviors), and may therefore reflect an overall trait of low 

self-control [12]. It should be noted that the evidence obtained 

to date remains correlational in nature. Therefore, similar to 

the data described by Curtis et al. [3], it cannot directly inform 

about the causal direction of the relationship. 

Whether insufficient sleep leads to impulsive decision 

making or is instead, a consequence of such short-sighted 

choice, matters with respect to the type of intervention that 

could be efficacious. If poor sleep is a root cause for impulsive 

choice, interventions targeted at improving sleep should 

lead to better, less impulsive decision making. However, 

we are not aware of any studies assessing changes choice 

impulsivity following sleep extension or after treatment of 

sleep disorders. Such intervention studies could clarify the 

direction of the reported association. On the other hand, if 

a strong preference for immediate reward is a driving factor 

leading to poor decisions about sleep, other interventions may 

be more effective. In the latter case, it could be particularly 

useful to incorporate approaches that are aimed at altering 

these sleep-related decisions, and reducing the influence of 

immediate temptations (e.g. TV, internet, social activities). 

In an age of mobile electronics, social media, and online 

entertainment this seems an area of growing importance. In 

the fields of health psychology and behavioral change, 

techniques that could help to change habits and guide 

behavioral choices towards healthy options, are under active 

investigation. Some of these techniques (e.g. "implementation 

intention": a technique of pre-planning relevant behaviors in 

concrete situation) have been found to improve sleep hygiene 

and increase sleep quality [13]. Similarly, techniques aimed at 

reducing delay discounting (e.g. "episodic future thinking": a 

technique of vividly imagining positive future events), have 

shown success in improving other healthy behaviors (e.g. 

smoking or healthy eating) [14]. 

Finally, it must be noted that the proposed mechanisms need 

not be mutually exclusive. In fact, theories on the relationship 

between sleep and self-control do propose that inadequate self- 

control may lead to the development of poor sleeping habits, 

while at the same time, a lack of sleep may interfere with the 

ability to exercise self-control [2, 10]. Such a bidirectional 

relationship has been found for other conditions that are 

associated with poor sleep (e.g. depression or stress), and is 

argued to be a factor sustaining sleep problems, and/or their 

exacerbation over time [15, 16]. 

In conclusion, it remains a highly relevant question how 

the association between habitual sleep and delay discounting comes 

about. The study by Curtis et al. [3] provides convincing evidence 

that such association exists. Analysis of large scale databases, such 

as the Human Connectome Project, allows for well-controlled and 

highly powered investigation of this matter. Whether changes in 

sleep (quantity or quality) can lead to cognitive improvement 

in the domain of delay discounting remains to be determined. 

Longitudinal and intervention studies are needed to shed light 

on this question. We further argue that the reverse relationship, 

that is, the role that impulsive choice may have in causing poor 

sleep, is a plausible pathway through which unhealthy sleep 

habits may be formed and sustained. Similarly, evidence for this 

mechanism, beyond correlational data, has yet to surface. Taking 

inspiration from health psychology and behavioral change to 

target alteration of decision processes that are underlying 

sleep-related behaviors, may prove fruitful in investigating this 

relationship and developing interventions. 

Funding 

None declared. 

Conflict of interest statement. None declared. 

References 


2. Pilcher JJ, et al. Interactions between sleep habits and self- 


3. Curtis BJ, et al. Objective cognitive functioning in self- 

reported habitual short sleepers not reporting daytime 

dysfunction: examination of impulsivity via delay 


delay discounting: an experiential discounting task. Behav 


5. Acheson A, et al. Effects of sleep deprivation on 

impulsive behaviors in men and women. Physiol Behav. 


action but not impulsive decision-making. Physiol Behav. 


7. O’Connor S, et al. Naps do not change delay discounting 


8. Libedinsky C, et al. Sleep deprivation alters effort 

discounting but not delay discounting of monetary rewards. 


9. Massar SAA, et al. Preserved calibration of persistence based on 

delay-time timing during sleep deprivation. J 


perspective on sleep insufficiency. In: Siros F, Psychyl 

T., eds. Procrastination, Health, and Well-Being. London, 


B978-0-12-802862-9.00005-0 


sleep hygiene in university students. Psychol Health Med. 


health behaviors with delay discounting and time 


